Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Vaccines (Basel) ; 11(4)2023 Apr 04.
Article in English | MEDLINE | ID: covidwho-2303724

ABSTRACT

Two doses of mRNA SARS-CoV-2 vaccines elicit an attenuated humoral immune response among immunocompromised patients. Our study aimed to assess the immunogenicity of a third dose of the BNT162b2 vaccine among lung transplant recipients (LTRs). We prospectively evaluated the humoral response by measuring anti-spike SARS-CoV-2 and neutralizing antibodies in 139 vaccinated LTRs ~4-6 weeks following the third vaccine dose. The t-cell response was evaluated by IFNγ assay. The primary outcome was the seropositivity rate following the third vaccine dose. Secondary outcomes included: positive neutralizing antibody and cellular immune response rate, adverse events, and COVID-19 infections. Results were compared to a control group of 41 healthcare workers. Among LTRs, 42.4% had a seropositive antibody titer, and 17.2% had a positive t-cell response. Seropositivity was associated with younger age (t = 3.736, p < 0.001), higher GFR (t = 2.355, p = 0.011), and longer duration from transplantation (t = -1.992, p = 0.024). Antibody titer positively correlated with neutralizing antibodies (r = 0.955, p < 0.001). The current study may suggest the enhancement of immunogenicity by using booster doses. Since monoclonal antibodies have limited effectiveness against prevalent sub-variants and LTRs are prone to severe COVID-19 morbidity, vaccination remains crucial for this vulnerable population.

2.
Isr Med Assoc J ; 25(2): 83-87, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2287787

ABSTRACT

BACKGROUND: Clinical investigations of long-term effects of coronavirus disease 2019 (COVID-19) are rarely translated to objective findings. OBJECTIVES: To assess the functional capacity of individuals reported on deconditioning that hampered their return to their pre-COVID routine. METHODS: Assessment included the 6-minute walk test (6MWT) and the 30-second sit-to-stand test (30-STST). We compared the expected and observed scores using the Wilcoxon signed-rank test. Predictors of test scores were identified using linear regression models. RESULTS: We included 49 individuals, of whom 38 (77.6%) were recovering from mild COVID-19. Twenty-seven (55.1%) individuals had a 6MWT score lower than 80% of expected. The average 6MWT scores were 129.5 ± 121.2 meters and 12.2 ± 5.0 repeats lower than expected scores, respectively (P < 0.001 for both). The 6MWT score was 107.3 meters lower for individuals with severe COVID-19 (P = 0.013) and rose by 2.7 meters per each 1% increase in the diffusing capacity of carbon monoxide (P = 0.007). The 30-STST score was 3.0 repeats lower for individuals who reported moderate to severe myalgia (P = 0.038). CONCLUSIONS: Individuals with long COVID who report on deconditioning exhibit significantly decreased physical capacity, even following mild acute illness. Risk factors include severe COVID-19 and impaired diffusing capacity or myalgia during recovery.


Subject(s)
COVID-19 , Exercise Test , Humans , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Exercise Tolerance , Myalgia
3.
Clin Infect Dis ; 75(10): 1688-1697, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2117296

ABSTRACT

BACKGROUND: Fatigue is the most prevalent and debilitating long-COVID (coronavirus disease) symptom; however, risk factors and pathophysiology of this condition remain unknown. We assessed risk factors for long-COVID fatigue and explored its possible pathophysiology. METHODS: This was a nested case-control study in a COVID recovery clinic. Individuals with (cases) and without (controls) significant fatigue were included. We performed a multidimensional assessment evaluating various parameters, including pulmonary function tests and cardiopulmonary exercise testing, and implemented multivariable logistic regression to assess risk factors for significant long-COVID fatigue. RESULTS: A total of 141 individuals were included. The mean age was 47 (SD: 13) years; 115 (82%) were recovering from mild coronavirus disease 2019 (COVID-19). Mean time for evaluation was 8 months following COVID-19. Sixty-six (47%) individuals were classified with significant long-COVID fatigue. They had a significantly higher number of children, lower proportion of hypothyroidism, higher proportion of sore throat during acute illness, higher proportions of long-COVID symptoms, and of physical limitation in daily activities. Individuals with long-COVID fatigue also had poorer sleep quality and higher degree of depression. They had significantly lower heart rate [153.52 (22.64) vs 163.52 (18.53); P = .038] and oxygen consumption per kilogram [27.69 (7.52) vs 30.71 (7.52); P = .036] at peak exercise. The 2 independent risk factors for fatigue identified in multivariable analysis were peak exercise heart rate (OR: .79 per 10 beats/minute; 95% CI: .65-.96; P = .019) and long-COVID memory impairment (OR: 3.76; 95% CI: 1.57-9.01; P = .003). CONCLUSIONS: Long-COVID fatigue may be related to autonomic dysfunction, impaired cognition, and decreased mood. This may suggest a limbic-vagal pathophysiology. CLINICAL TRIALS REGISTRATION: NCT04851561.


Subject(s)
COVID-19 , Fatigue , Humans , Middle Aged , Case-Control Studies , COVID-19/complications , Fatigue/epidemiology , Risk Factors , Adult , Post-Acute COVID-19 Syndrome
5.
Chest ; 160(1): e9-e12, 2021 07.
Article in English | MEDLINE | ID: covidwho-1122270

ABSTRACT

Patients with COVID-19 report severe respiratory symptoms consistent with ARDS. The clinical presentation of ARDS in COVID-19 is often atypical, as patients with COVID-19 exhibit a disproportionate hypoxemia compared with relatively preserved lung mechanics. This pattern is more similar to neonatal respiratory distress syndrome secondary to surfactant deficiency, which has been shown to benefit from exogenous surfactant. We present our experience with exogenous surfactant treatment in a patient with COVID-19 experiencing COVID-19-related ARDS. The patient responded with improved oxygenation, and we believe surfactant was the catalyst for the successful extubation and clinical improvement of the patient.


Subject(s)
Biological Products/administration & dosage , COVID-19 , Critical Care/methods , Hypoxia , Patient Positioning/methods , Antiviral Agents/administration & dosage , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/physiopathology , COVID-19/therapy , Drug Monitoring/methods , Extracorporeal Membrane Oxygenation/methods , Humans , Hypoxia/etiology , Hypoxia/therapy , Lung/diagnostic imaging , Male , Middle Aged , Oximetry/methods , Pulmonary Surfactants/administration & dosage , Respiration, Artificial/methods , SARS-CoV-2/isolation & purification , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL